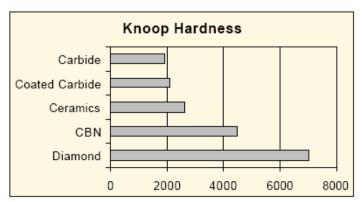


PCD & CBN

Polycrystaline Diamond (PCD) & Cubic Boron Nitride (CBN)

VR/Wesson uses only the highest quality Diamond and PCD & CBN based products in their cutting tools.


VR/Wesson performs all grinding and inspection on the latest and most technologically advanced equipment.

VR/Wesson stands behined the quality and performance of its cutting tools 100%.

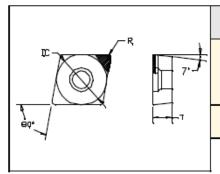
Technical Data for Polycrystalline Diamond (PCD)

PCD Grades - VR/Wesson PCD tipped tools offer the hardness, strength and abrasion resistance of single crystal diamond without the susceptability of fracturing. Our PCD tipped tools are capable of high material removal rates with very high thermal conductility allowing greater heat dissipation in roughing and finishing operations. Additional benefits include long tool life in highly abrasive aluminum/silicon alloys, reinforced composites and plastics.

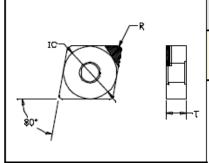
GRADE	APPLICATIONS	CHARACTERISTICS
VRS-5D	Successful in machining of high silicon aluminium alloys, metal matrix composites (MMC), tungsten carbides and ceramics.	Average grain size of 25µm. VRS-5D offers the optimum wear resistance for abrasive machining conditions.
VRS-6D	The ideal grade where roughing and finishing are performed with a single tool. Highly recommended for low to medium cocntent aluminium alloys.	10 µm average grain size. VRS-6D is the workhorse PCD grade ideal for many applications where a good balance of toughness and wear resistance is required.
VRS-30D	Application areas include MMC, high silicond aluminium alloys, high strength cast irons and bi-metal applications. Excellent abrasive resistance and good thermal stability.	A multi-modal PCD with a combination of 2µm and 30µm grain sizes which gives VRS-30D excellent wear resistance, edge strength and edge quality.
VRS-850D	Ideal for milling and rough cutting of aluminium alloys where extreme chip resistance is required, also for machining titanium and composites.	Sub-micron grain size. VRS-850D's ultra-fine grain structure is suitable for applications where mirror finishes are required due to its extreme edge sharpness/retention.

Material		Operation	Recommended Grade	Cutting Speed (SFPM)	Depth of Cut	Feed Rate IPR for Turning FPT for Milling
	<12% Si >12% Si	Rough Turning	VRS-5D	3000-10000 1000-3000	.004125 .004125	.004015 IPR .004015 IPR
Aluminum Alloys	<12% Si >12% Si	Finish Turn-	VRS-6D	3000-10000 1000-3000	.004040 .004040	.004008 IPR .004008 IPR
	<12% Si <12% Si >12% Si	Milling	VRS-5D	5000-12000 1250-3000	.004125 .004125	.004012 FPT .004012 FPT
		Rough Turning	VRS-5D	2000-3000	.020080	.004012 IPR
Copper, Zinc & Brass		Finish Turning	VRS-6D	2250-4000	.004020	.004012 IPR
		Milling	VRS-5D	2250-4000	.004125	.004012 IPR
		Rough Turning	VRS-5D	500-2500	.040080	.004015 IPR
Reinforced Plastic	cs	Finish Turning	VRS-6D	1000-5000	.004040	.004015 IPR
		Milling	VRS-5D	1000-5000	.004125	.004012 FPT
Sintered Tungsten Carbide		Rough Turning	VRS-5D		.004020	.004012 IPR
		Finish Turning	VRS-6D	65-130	.004008	.004012 IPR
		Sawing		(5.120	n/a	.020060 FPT
Manufactured Wo	ood	Routing	VRS-850D	65-130	n/a	.020060 FPT

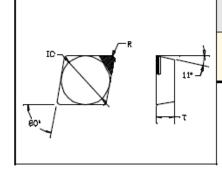
Technical Data for Cubic Boron Nitride (CBN)

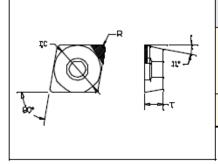


CBN Grades - VR/Wesson CBN consists of fine particles of CBN crystals, randomly oriented and strongly bonded together and to a ceramic matrix. This combination provides a uniform high hardness and wear resistance in all directions, resulting in high fracture and wear resistance as well as excellent thermal and chemical stability. CBN is specifically designed for machining ferrous materials for the automotive, aerospace and heavy machining industries.

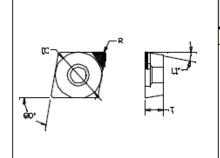

GRADE	APPLICATIONS	CHARACTERISTICS
VRS-100-C	Extreme wear resistance due to high content of course CBN grain. Size: 10µm, Content: 92%	Rough machining of cast irion and powder metal alloys. Binder: Aluminum Nitride, Hardness: 3700-3900
VRS-951-C	Extreme wear resistance and high chipping resistance due to high content CBN and fine CBN size. Size: 2µm, Content: 95%	Machining most kinds of cast iron and powder metal alloy. Binder: Titanium Alloy, Hardness: 3700-3900
VRS-953-C	Extreme wear resistance and high chipping resistance due to high content CBN and fine CBN size. Size: 2µm, Content: 95%	Machining most kinds of cast iron and powder metal alloy. Binder: Tungsten Cobalt Alloy, Hardness: 3700-3900
VRS-95N-C	Extreme wear resistance due to high content of CBN and metal binder. Size: 3µm, Content: 95%	Machining most kinds of cast iron. Binder: Titanium Alloy, Hardness: 3700-3900
VRS-650-C	Combination of wear resistance and thermal stability. Size: 3µm, Content: 65%	High speed and interrupted machining of hardened steel. Binder: Titanium Nitride, Hardness: 2700-2900
VRS-630-C	Combination of wear resistance and impact strength. Size: 1µm, Content: 60%	General use in continuous and light interrupted machining of hardened steel. Binder: Titanium Nitride, Hardness: 2500 - 2700
VRS-500-C	Good thermal stability and crater wear resistance. Size: 1µm, Content 50%	High speed continuous machining of hardened steel. Binder: Titanium Carbide, Hardness: 2500-2700

Material	Operation	Recommended Grade	Cutting Speed (SFPM)	Depth of Cut	Feed Rate IPR for Turning FPT for Milling
Pearlitic Grey Cast Iron	Rough/Finish	AG600 AG700	1950-3950	.004100	.006023
Hard Cast Iron (>45Rc)	Rough/Finish	AG700	250-495	.008100	.005025
Hardened Steels (>45Rc)	Rough/Finish	AG600 AG700	215-395	.020100	.004020
Alloy Steels	Finishing	AG820	325-495	.004020	.004006
Tool and Die Steels	Finishing	AG820	295-360	.004020	.004006
Hard Facing Alloys	Rough/Finish	AG600	985-2300	.004060	.004010
Powder Metals	Rough/Finish	AG600	295-590	.004050	.004010
Super Alloys	Finishing	AG600	495-820	.004100	.004012

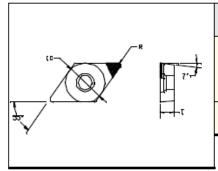



CCGW	IC	Т	R	HOLE
CCGW2150	0.250	0.094	0.004	0.110
CCGW2151	0.250	0.094	0.016	0.110
CCGW2152	0.250	0.094	0.031	0.110
CCGW3250	0.375	0.156	0.004	0.173
CCGW3251	0.375	0.156	0.016	0.173
CCGW3252	0.375	0.156	0.031	0.173

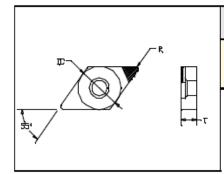
CNGA	IC	T	R	HOLE
CNGA431	0.500	0.188	0.016	0.203
CNGA432	0.500	0.188	0.031	0.203
CNGA433	0.500	0.188	0.047	0.203

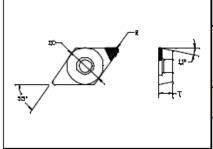


CPG	IC	Т	R	HOLE
CPG421	0.500	0.125	0.016	-
CPG422	0.500	0.125	0.031	-
CPG423	0.500	0.125	0.047	-

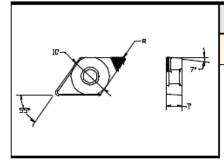


CPGW	IC	Т	R	HOLE
CPGW2150	0.250	0.094	0.004	0.110
CPGW2151	0.250	0.094	0.016	0.110
CPGW2152	0.250	0.094	0.031	0.110
CPGW3250	0.375	0.156	0.004	0.173
CPGW3251	0.375	0.156	0.016	0.173
CPGW3252	0.375	0.156	0.031	0.173

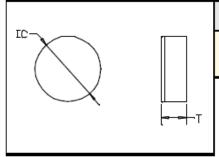



CPMW	IC	Т	R	HOLE
CPMW 1.81.51	0.219	0.094	0.016	0.098

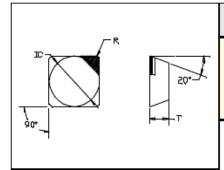
DCGW	IC	Т	R	HOLE
DCGW2150	0.250	0.094	0.004	0.110
DCGW2151	0.250	0.094	0.016	0.110
DCGW2152	0.250	0.094	0.031	0.110
DCGW3250	0.375	0.156	0.004	0.173
DCGW3251	0.375	0.156	0.016	0.173
DCGW3252	0.375	0.156	0.031	0.173

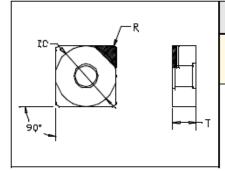


DNGA	C	T	R	HOLE
DNGA431	0.500	0.188	0.016	0.203
DNGA432	0.500	0.188	0.031	0.203
DNGA433	0.500	0.188	0.047	0.203

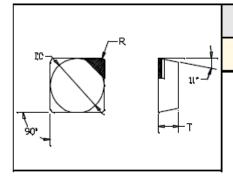


DPGW	IC	Т	R	HOLE
DPGW2150	0.250	0.094	0.004	0.110
DPGW2151	0.250	0.094	0.016	0.110
DPGW2152	0.250	0.094	0.031	0.110
DPGW3250	0.375	0.156	0.004	0.173
DPGW3251	0.375	0.156	0.016	0.173
DPGW3252	0.375	0.156	0.031	0.173

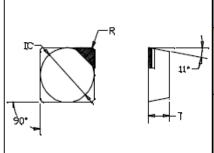



DTGA	IC	Т	R	HOLE
DTGA432	0.500	0.188	0.031	0.203
DTGA433	0.500	0.188	0.047	0.203

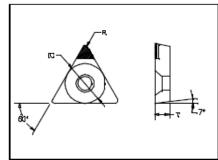
RNG	IC	Т	R	HOLE
RNG32	0.375	0.125	0.188	-
RNG42	0.500	0.125	0.250	-
RNG43	0.500	0.188	0.250	-

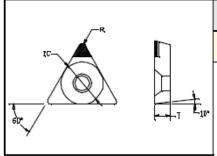


SEC	IC	T	R	HOLE
SEC421	0.500	0.125	0.016	-
SEC422	0.500	0.125	0.031	-
SEC432	0.500	0.188	0.031	-
SEC433	0.500	0.188	0.047	-
SEC434	0.500	0.188	0.062	-

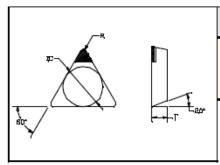


SNGA	IC	T	R	HOLE
SNGA431	0.500	0.188	0.016	0.203
SNGA432	0.500	0.188	0.031	0.203
SNGA433	0.500	0.188	0.047	0.203

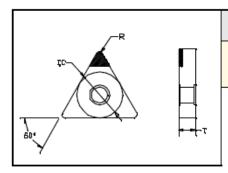



SPCE	C	T	R	HOLE
SPCE731	0.219	0.094	0.016	-
SPCE732	0.219	0.094	0.031	-

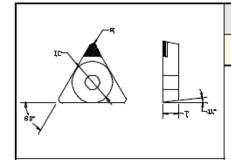
SPG	IC	Т	R	HOLE
SPG321	0.375	0.125	0.016	-
SPG322	0.375	0.125	0.031	-
SPG323	0.375	0.125	0.047	-
SPG324	0.375	0.125	0.062	-
SPG421	0.500	0.125	0.016	-
SPG422	0.500	0.125	0.031	-
SPG423	0.500	0.125	0.047	-
SPG424	0.500	0.125	0.062	-
SPG432	0.500	0.188	0.031	-
SPG433	0.500	0.188	0.047	-
SPG434	0.500	0.188	0.062	-

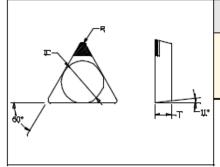


TCGW	IC	Т	R	HOLE
TCGW2150	0.250	0.094	0.004	0.110
TCGW2151	0.250	0.094	0.016	0.110
TCGW2152	0.250	0.094	0.031	0.110
TCGW3250	0.375	0.156	0.004	0.173
TCGW3251	0.375	0.156	0.016	0.173
TCGW3252	0.375	0.156	0.031	0.173

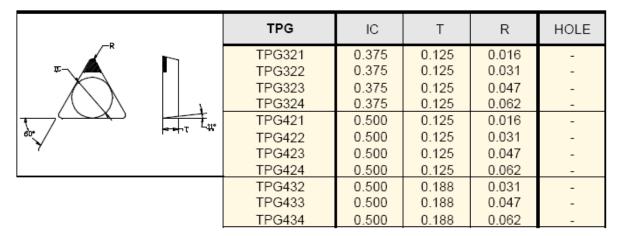


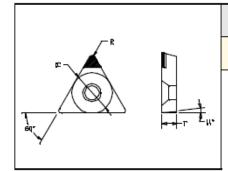
TD	IC	Т	R	HOLE
TD6P	0.375	0.125	0.031	0.125
TD7P	0.438	0.125	0.031	0.125

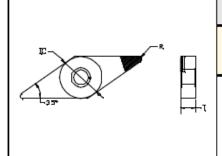


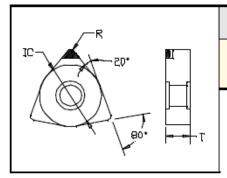

TEC	IC	Т	R	HOLE
TEC2521	0.312	0.125	0.016	-
TEC2522	0.312	0.125	0.031	-
TEC321	0.375	0.125	0.016	-
TEC322	0.375	0.125	0.031	-

TNGA	IC	Т	R	HOLE
TNGA431	0.500	0.188	0.016	0.203
TNGA432	0.500	0.188	0.031	0.203
TNGA433	0.500	0.188	0.047	0.203

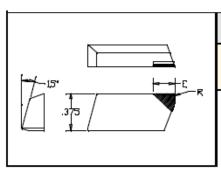


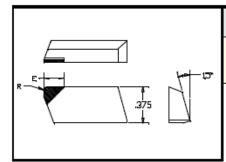

TP	C	Т	R	HOLE
TP41	0.250	0.094	0.016	0.137
TP61	0.375	0.125	0.031	0.163

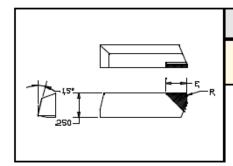

TPEE	IC	T	R	HOLE
TPEE521	0.156	0.063	0.016	-
TPEE631	0.188	0.094	0.016	-
TPEE731	0.219	0.094	0.016	-
TPEE732	0.219	0.094	0.031	-



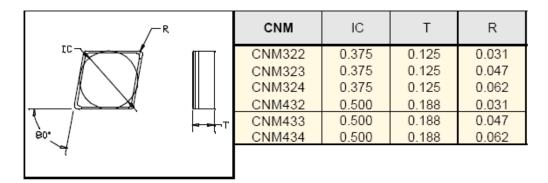
ТРНВ	IC	Т	R	HOLE
TPHB090204	0.219	0.094	0.016	0.112
TPHB110208	0.250	0.094	0.031	0.112

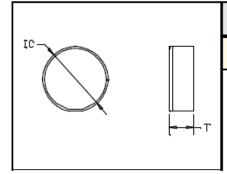

VNGA	IC	T	R	HOLE
VNGA331	0.375	0.188	0.016	0.150
VNGA332	0.375	0.188	0.031	0.150
VNGA333	0.375	0.188	0.047	0.150


WNMA	IC	T	R	HOLE
WNMA431	0.500	0.188	0.016	0.203
WNMA432	0.500	0.188	0.031	0.203
WNMA433	0.500	0.188	0.047	0.203

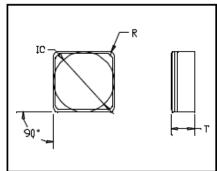

EDGE LENGTH		
E1	0.250	
E2	0.375	
E3	0.500	
E4	0.625	
E5	0.750	

SDR	RADIUS	EDGE LENGTH (E)
SDR-100-031	0.031	E1-E5
SDR-100-062 SDR-100-093	0.062 0.093	E1-E5 F1-F5
3DR-100-033	0.055	LI-LJ

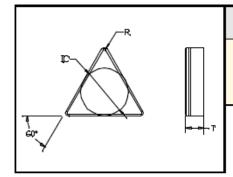

SDL	RADIUS	EDGE LENGTH (E)
SDL-200-031	0.031	E1-E5
SDL-200-062	0.062	E1-E5
SDL-200-093	0.093	E1-E5



EDR	RADIUS	EDGE LENGTH (E)
EDR-100-015 EDR-100-031	0.015 0.031	E1-E5 E1-E5
EDD 400 000	0.062	E1 E5

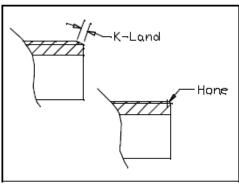


FULL TOP AND SOLID CBN ANSI INSERTS



RNM	IC	T	R
RNM32	0.375	0.125	0.188
RNM43	0.500	0.188	0.250

SNM	IC	Т	R
SNM322	0.375	0.125	0.031
SNM323	0.375	0.125	0.047
SNM324	0.375	0.125	0.062
SNM432	0.500	0.188	0.031
SNM433	0.500	0.188	0.047
SNM434	0.500	0.188	0.062



TNM	IC	T	R
TNM221	0.250	0.125	0.016
TNM222	0.250	0.125	0.031
TNM223	0.250	0.125	0.047
TNM224	0.250	0.125	0.062

EDGE PREPS & HONES

EDGE PREPS FOR TIPPED, FULL TOP AND SOLID CBN ANSI INSERTS

MATERIAL	EDGE PREP FOR ROUGHING	EDGE PREP FOR FINISHING
Hardened Steel	20° x .008/.010	20° x .004/.006
Hard Facing Alloys	15°/20° x .008	20° x .008
Powdered Metals	20° x .008/.010	20° x .008
Grey Cast Iron	15°/20° x .008	.001/.002 Hone
Hard Cast Iron	15°/20° x .008	20° x .008
Superalloys	15°/20° x .008	.0005 Hone

General tips for PCD and CBN tipped tools

- · Always use rigid machining systems with sufficient horsepower.
- Always minimize tool overhang.
- · Always handle PCD and CBN tools with great care to avoid chipping.

Tips for using PCD tipped tools:

- · Use positive rake geometry tooling and the largest nose radius possible.
- · Climb mill whenever possible.
- Keep depth of cut below 75% of the PCD segment length.
- · Can be used wet or dry, but flood coolant is recommended.
- · Never use when machining any ferrous materials.

Tips for using CBN tipped tools:

- Use negative rake tooling and the largest lead angles possible.
- Set tool height on center.
- · Use the largest nose radius possible.
- · Use chamfered edge on severe and interrupted cuts.

